
decoded.avast.io

VB6 P-Code Disassembly - Avast
Threat Labs

by David Zimmer

18-23 minutes

In this article we are going to discuss the inner depths of VB6

P-Code disassembly and the VB6 runtime.

As a malware analyst, VB6 in general, and P-Code in particular,

has always been a problem area. It is not well documented and the

publicly available tooling did not give me the clarity I really desired.

In several places throughout this paper there may be VB runtime

offsets presented. All offsets are to a reference copy with md5:

EEBEB73979D0AD3C74B248EBF1B6E770 [1]. Microsoft has been

kind enough to provide debug symbols with this version for the

.ENGINE P-Code handlers.

To really delve into this topic we are going to have to cover several

areas.

The general layout will cover:

how the runtime executes a P-Code stream

how P-Code handlers are written

primer on the P-Code instruction set

instruction groupings

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

1 of 20 5/5/2021, 12:28 PM

internal runtime conventions

how to debug handlers

Native Opcode Handlers & Code Flow

Let’s start with how a runtime handler interprets the P-Code stream.

While in future articles we will detail how the transition is made from

native code to P-Code.

For our purposes here, we will look at individual opcode handlers

once the P-Code interpretation has already begun.

For our first example, consider the following P-Code disassembly:

Here we can see two byte codes at virtual address 0x401932.

These have been decoded to the instruction LitI2_Byte 255.

0xF4 is the opcode byte. 0xFF is the hardcoded argument passed

in the byte stream.

The opcode handler for this instruction is the following:

While in a handler, the ESI register will always start as the virtual

address of the next byte to interpret. In the case above, it would be

0x401933 since the 0xF4 byte has already been processed to get

us into this handler.

The first instruction at 0x66105CAB will load a single byte from the

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

2 of 20 5/5/2021, 12:28 PM

P-Code byte stream into the EAX register. This value is then

pushed onto the stack. This is the functional operation of this

opcode.

EAX is then cleared and the next value from the byte stream is

loaded into the lower part of EAX (AL). This will be the opcode

byte that takes us to the next native handler.

The byte stream pointer is then incremented by two. This will set

ESI past the one byte argument, and past the next opcode which

has already been consumed.

Finally, the jmp instruction will transfer execution to the next

handler by using the opcode as an array index into a function

pointer table.

Now that last sentence is a bit of a mouth full, so lets include an

example. Below is the first few entries from the _tblByteDisp

table. This table is an array of 4 byte function pointers.

Each opcode is an index into this table. The *4 in the jump

statement is because each function pointer is 4 bytes (32 bit code).

The only way we know the names of each of these P-Code

instructions is because Microsoft included the handler names in the

debug symbols for a precious few versions of the runtime.

The snippet above also reveals several characteristics of the

opcode layout to be aware of. First note, there are invalid slots such

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

3 of 20 5/5/2021, 12:28 PM

as opcode 0x01-InvalidExCode. The reason for this is

unknown, but it also means we can have some fun with the runtime

such as introducing our own opcodes [5].

The second thing to notice is that multiple opcodes can point to the

same handlers such as the case with lblEX_Bos. Here we see

that opcode 0 leads to the same place as opcode 2. There are

actually 5 opcode sequences which point to the BoS (Beginning of

Statement) handler.

The next thing to notice is that the opcode names are abbreviated

and will require some deciphering to learn how to read them.

Finally from the LitI2_Byte handler we already analyzed, we can

recognize that all of the stubs were hand written in assembler.

From here, the next question is how many handlers are there? If

each opcode is a single byte, there can only be a maximum of 255

handlers right? That would make sense, but is incorrect.

If we look at the last 5 entries in the _tblByteDisp table we find

this:

The handler for each of these looks similar to the following:

Here we see EAX zeroed out, the next opcode byte loaded into AL

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

4 of 20 5/5/2021, 12:28 PM

and the byte code pointer (ESI) incremented. Finally it uses that

new opcode to jump into an entirely different function pointer table.

This would give us a maximum opcode count of (6*255)-5 or

1525 opcodes.

Now luckily, not all of these opcodes are defined. Remember some

slots are invalid, and some are duplicate entries. If we go through

and eliminate the noise, we are left with around 822 unique

handlers. Still nothing to sneeze at.

So what the above tells us is that not all instructions can be

represented as a single opcode. Many instructions will be prefixed

with a lead byte that then makes the actual opcode reference a

different function pointer table.

Here is a clip from the second tblDispatch pointer table:

To reach lblEX_ImpUI1 we would need to encode 0xFB as the

lead byte and 0x01 as the opcode byte.

This would first send execution into the _lblBEX_Lead0 handler,

which then loads the 0x01 opcode and uses tblDispatch table

to execute lblEX_ImpUI1.

A little bit confusing, but once you see it in action it becomes quite

clear. You can watch it run live for yourself by loading a P-Code

executable into a native debugger and setting a breakpoint on the

lead* handlers.

Byte stream argument length

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

5 of 20 5/5/2021, 12:28 PM

Before we can disassemble a byte stream, we also need to know

how many byte code arguments each and every instruction takes.

With 822 instructions this can be a big job! Luckily other reversers

have already done much of the work for us. The first place I saw

this table published was from Mr Silver and Mr Snow in the

WKTVBDE help file.

A codified version of this can be found in the Semi-VbDecompiler

source [2] which I have used as a reference implementation. The

opcode sizes are largely correct in this table, however some errors

are still present. As with any reversing task, refinement is a process

of trial and error.

Some instructions, 18 known to date, have variable length byte

stream arguments. The actual size of the byte stream to consume

before the next opcode is embedded as the two bytes after the

opcode. An example of this is the FFreeVar instruction.

In this example we see the first two bytes decode as 0x0008 (little

endian format), which here represents 4 stack variables to free.

Opcode Naming Conventions

Before we continue on to opcode arguments, I will give a brief word

on naming conventions and opcode groupings.

In the opcode names you will often see a combination of the

following abbreviations. The below is my current interpretation of

the less intuitive specifiers:

Opcode Description

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

6 of 20 5/5/2021, 12:28 PM

abbreviation

Imp Import

Ad Address

St / Ld Store / Load

I2 Integer/Boolean

I4 Long

UI1 Byte

Lit Literal(ie “Hi”,2,8)

Cy Currency

R4 Single

R8 Double

Str String

Fn Calls a VBA export function

FPR Floating point register

PR Uses ebp-4C as a general register

Var Variant

Rf Reference

VCall VTable call

LateID Late bound COM object call by method ID

LateNamed Late bound COM Object call by method

name

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

7 of 20 5/5/2021, 12:28 PM

Specifiers are often combined to denote meaning and opcodes

often come in groups such as the following:

An opcode search interface such as this is very handy while

learning the VB6 instruction set.

Opcode Groups

The following shows an example grouping:

Opcode

abbreviation

Description

ForUI1 Start For loop with byte as counter type

ForI2 With integer counter, default step = 1

ForI4 Long type as counter

ForR4

ForR8

ForCy

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

8 of 20 5/5/2021, 12:28 PM

ForVar

ForStepUI1 For loop with byte counter, user specified

step

ForStepI2

ForStepI4

ForStepR4

ForStepR8

ForStepCy

ForStepVar

ForEachCollVar For each loop over collection using variant

ForEachAryVar For each loop over array using variant

ForEachCollObj For each loop over collection using object

type

ForEachCollAd

ForEachVar

ForEachVarFree

A two part series on the intricacies of how For loops were

implemented is available [3] for the curious.

As you can see, the opcode set can collapse down fairly well once

you take into account the various groupings. While I have grouped

the instructions in the source, I do not have an exact number as the

lines between them can still be a bit fuzzy. It is probably around 100

distinct operations once grouped.

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

9 of 20 5/5/2021, 12:28 PM

Now onto the task of argument decodings. I am not sure why, but

most P-Code tools only show you the lead byte, opcode byte,

mnemonic. Resolved arguments are only displayed if it is fully

handled.

Everything except Semi-VBDecompiler [6] skips the display of the

argument bytes.

The problem arises from the fact no tool decodes all of the

arguments correctly for all of the opcodes yet. If you do not see the

argument byte stream, there is no indication other than a subtle

jump in virtual address that anything has been hidden from you.

Consider the following displays:

The first version shows you opcode and mnemonic only. You don’t

even realize anything is missing. The second version gives you a

bigger hint and at least shows you no argument resolution is

occurring. The third version decodes the byte stream arguments,

and resolves the function call to a usable name.

Obviously the third version is the gold standard we should expect

from a disassembler. The second version can be acceptable and

shows something is missing. The first version leaves you clueless.

If you are not already intimately familiar with the instruction set, you

will never know you are missing anything.

Common opcode argument types

In the Semi-VbDecompiler source many opcodes are handled with

custom printf type specifiers [4]. Common specifiers include:

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

10 of 20 5/5/2021, 12:28 PM

Format

specifier

Description

%a Local argument

%l Jump location

%c Proc / global var address stored in constant

pool

%e Pool index as P-Code proc to call

%x Pool index to locate external API call

%s Pool index of string address

%1/2/4 Literal byte, int, or long value

%t Code object from its base offset

%v VTable call

%} End of procedure

Many opcodes only take one or more simple arguments, %a and %s

being the most common.

Consider "LitVarStr %a %s" which loads a variant with a literal

BSTR string, and then pushes that address to the top of the stack:

The %a decoder will read the first two bytes from the stream and

decode it as follows:

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

11 of 20 5/5/2021, 12:28 PM

Interpreting 0xFF68 as a signed 2 byte number is -0x98. Since it

is a negative value, it is a local function variable at ebp-0x98.

Positive values denote function arguments.

Next the %s handler will read the next two bytes which it interprets

as a pool index. The value at pool index 0 is the constant

0x40122C. This address contains an embedded BSTR where the

address points to the unicode part of the string, and the preceding

4 bytes denoting its length.

A closer look at run time data for this instruction is included in the

debugging section later on.

Another common specifier is the %l handler used for jump

calculations. It can be seen in the following examples:

In the first unconditional jump the byte stream argument is 0x002C.

Jump locations are all referenced from the function start address,

not the current instruction address as may be expected.

0x4014E4 + 0x2C = 0x401510

0x4014E4 + 0x3A = 0x40151E

Since all jumps are calculated from the beginning of a function, the

offsets in the byte stream must be interpreted as unsigned values.

Jumps to addresses before the function start are not possible and

represent a disassembly error.

Next lets consider the %x handler as we revisit the

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

12 of 20 5/5/2021, 12:28 PM

"ImpAdCallFPR4 %x" instruction:

The native handler for this is:

Looking at the P-Code disassembly we can see the byte stream of

24001000 is actually two integer values. The first 0x0024 is a

constant pool index, and the second 0x0010 is the expected stack

adjustment to verify after the call.

Now we haven’t yet talked about the constant pool or the house

keeping area of the stack that VB6 reserves for state storage. For

an abbreviated description, at runtime VB uses the area between

ebp and ebp-94h as kind of a scratch pad. The meaning of all of

these fields are not yet fully known however several of the key

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

13 of 20 5/5/2021, 12:28 PM

entries are as follows:

Stack position Description

ebp-58 Current function start address

ebp-54 Constant pool

ebp-50 Current function raw address (RTMI structure)

ebp-4C PR (Pointer Register) used for Object references

In the above disassembly we can see entry 0x24 from the constant

pool would be loaded.

A constant pool viewer is a very instructive tool to help decipher

these argument byte codes.

It has been found that smart decoding routines can reliably

decipher constant pool data independent of analysis of the actual

disassembly.

One such implementation is shown below:

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

14 of 20 5/5/2021, 12:28 PM

If we look at entry 0x0024 we see it holds the value 0x4011CE. If

we look at this address in IDA we find the following native

disassembly:

0x40110C is the IAT address of msvbvm60.rtcImmediateIf

import. This opcode is how VB runtime imports are called.

While beyond the scope of this paper, it is of interest to note that

VB6 embeds a series of small native stubs in P-Code executables

to splice together the native and P-Code executions. This is done

for API calls, call backs, inter-modular calls etc.

The Constant Pool

The constant pool itself is worth a bit of discussion. Each

compilation unit such as a module, class, form etc gets its own

constant pool which is shared for all of the functions in that file.

Pool entries are built up on demand as the file is processed by the

compiler from top to bottom.

The constant pool can contain several types of entries such as:

string values (BSTRs specifically)

VB method native call stubs

API import native call stubs

COM GUIDs

COM CLSID / IID pairs held in COMDEF structures

CodeObject base offsets

blank slots which represent internal COM objects filled out at

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

15 of 20 5/5/2021, 12:28 PM

startup by the runtime (ex: App.)

More advanced opcode processors

More complex argument resolutions require a series of opcode post

processors. In the disassembly engine I am working on there are

currently 13 post processors which handle around 30 more

involved opcodes.

Things start to get much more complex when we deal with COM

object calls. Here we have to resolve the COM class ID,

interface ID, and discern its complete VTable layout to

determine which method is going to be called. This requires access

to the COM objects type library if its an external type, and the ability

to recreate its function prototype from that information.

For internal types such as user classes, forms and user

controls, we also need to understand their VTable layout.

For internal types however we do not receive the aid of tlb files.

Public methods will have their names embedded in the VB file

format structures which can be of help.

Resolution of these types of calls is beyond the scope of what we

can cover in an introductory paper, but it is absolutely critical to get

right if you are writing a disassembler that people are going to rely

upon for business needs.

More on opcode handler inputs

Back to opcode arguments. It is also important to understand that

opcodes can take dynamic runtime stack arguments in addition to

the hard coded byte stream arguments. This is not something that

a disassembler necessarily needs to understand though. This level

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

16 of 20 5/5/2021, 12:28 PM

of knowledge is mainly required to write P-Code assembly or a

P-Code decompiler.

Some special cases however do require the context of the previous

disassembly in order to resolve properly. Consider the following

multistep operation:

Here the LateIdLdVar resolver needs to know which object is

being accessed. Scanning back and locating the VCallAd

instruction is required to find the active object stored in PR.

Debugging handlers

When trying to figure out complex opcode handlers, it is often

helpful to watch the code run live in a debugger. There are

numerous techniques available here. Watching the handler itself

run requires a native debugger.

Typically you will figure out how to generate the opcode with some

VB6 source which you compile. You then put the executable in the

same directory as your reference copy of the vb runtime and start

debugging.

Some handlers are best viewed in a native debugger, however

many can be figured out just by watching it run through a P-Code

debugger.

A P-Code debugger simplifies operations showing you its execution

at a higher level. In one step of the debugger you can watch

multiple stack arguments disappear, and the stack diff light up with

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

17 of 20 5/5/2021, 12:28 PM

changes to other portions. Higher level tools also allow you to view

complex data types on the stack as well as examine TLS memory

and keep annotated offsets.

In some scenarios you may actually find yourself running both a

P-Code debugger and a native debugger on the target process at

the same time.

One important thing to keep in mind is that VB6 makes heavy use

of COM types.

Going back to our LitVarStr example:

You would see the following after it executes:

0019FC28 ebp-120 0x0019FCB0 ; ebp-98 - top of

stack

...

0019FCB0 ebp-98 0x00000008

0019FCB4 ebp-94 0x00000000

0019FCB8 ebp-90 0x0040122C

A data viewer would reveal the following when decoding ebp-98 as

a variant:

Variant 19FCB0

VT: 0x8(Bstr)

Res1: 0

Res2: 0

Res3: 0

Data: 40122C

String len: 9 -> never hit

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

18 of 20 5/5/2021, 12:28 PM

Debugging VB6 apps is a whole other ball of wax. I mention it here

only in passing to give you a brief introduction to what may be

required when deciphering what opcodes are doing. In particular

recognizing Variants and SafeArrays in stack data will serve

you well when working with VB6 reversing.

Conclusion

In this paper we have laid the necessary ground work in order to

understand the basics of a VB6 P-Code disassembly engine. The

Semi-VbDecompiler source is a good starting point to understand

its inner workings.

We have briefly discussed how to find and read native opcode

handlers along with some of the conventions necessary for

understanding them. We introduced you to how opcodes flow from

one to the next, along with how to determine the number of byte

stream arguments each one takes, and how to figure out what they

represent.

There is still much work to be done in terms of documenting the

instruction set. I have started a project where I catalog:

VB6 source code required to generate an opcode

byte stream arguments size and meaning

stack arguments consumed

function outputs

Unfortunately it is still vastly incomplete. This level of

documentation is foundational and quite necessary for writing any

P-Code analysis tools.

Still to be discussed, is how to find the actual P-Code function

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

19 of 20 5/5/2021, 12:28 PM

blobs within the VB6 compiled executable. This is actually a very

involved task that requires understanding a series of complex and

nested file structures. Again the Semi-VbDecompiler source can

guide you through this maze.

While VB6 is an old technology, it is still commonly used for

malware. This research is aimed at reducing gaps in understanding

around it and is also quite interesting from a language design

standpoint.

[1] – VB6 runtime with symbols

[2] – Semi-VbDecompiler opcode table Source

[3] – A closer look at the VB6 For Loop implementation

[4] – Semi-VBDecompiler opcode argument decodings

[5] – Introducing a one byte NOP opcode

[6] – Semi-VBDecompiler

VB6 P-Code Disassembly - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-disa...

20 of 20 5/5/2021, 12:28 PM

